Extremal behavior of pMAX processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Theory for Stochastic Processes

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Extremal Processes with One Jump

Convergence of a sequence of deterministic functions in the Skorohod topology d…‰0;?†† implies convergence of the jumps. For processes with independent additive increments the ®xed discontinuities converge. In this paper it will be shown that this is not true for processes with independent max-increments. The limit in d…‰0;?†† of a sequence of stochastically continuous extremal processes may ha...

متن کامل

Stochastic Volatility Models: Extremal Behavior

Stochastic volatility determines, as a rule, the extreme risk in price fluctuations. We review some of the most important stochastic volatility models concerning their extreme behaviour. This includes the tail behaviour as well as the cluster possibilities of such models. The following pattern is common for discretetime and continuous-time models. In linear models the volatility inherits the ta...

متن کامل

Weak Convergence of Subordinators to Extremal Processes

For certain subordinators (Xt)t≥0 it is shown that the process (−t logXts)s>0 tends to an extremal process (η̂s)s>0 in the sense of convergence of the finite dimensional distributions. Additionally it is also shown that (z ∧ (−t logXts))s≥0 converges weakly to (z ∧ η̂s)s≥0 in D[0,∞), the space of càdlàg functions equipped with Skorohod’s J1 metric.

متن کامل

Extremal behavior of stochastic integrals driven by regularly varying Lévy processes

We study the extremal behavior of a stochastic integral driven by a multivariate Lévy process that is regularly varying with index α > 0. For predictable integrands with a finite (α + δ)-moment, for some δ > 0, we show that the extremal behavior of the stochastic integral is due to one big jump of the driving Lévy process and we determine its limit measure associated with regular variation on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2014

ISSN: 0167-7152

DOI: 10.1016/j.spl.2014.06.009